1 Recursion Equations

1.1 Concepts

1. A first order linear recurrence equation is of the form $a_{n}=\alpha a_{n-1}+\beta$. The general solution to this is

$$
a_{n}=\alpha^{n} a_{0}+\beta \frac{\alpha^{n}-1}{\alpha-1}
$$

if $\alpha \neq 1$ and $a_{n}=a_{0}+n \beta$ otherwise.

1.2 Examples

2. Solve the recurrence relation $a_{n}=2 a_{n-1}+1$ with $a_{0}=0$.

2 Differential Equations

2.1 Concepts

3. A problem of the form $y^{\prime}=f(t, y)$ and $y(0)=y_{0}$ is called an initial value problem (IVP). There is a theorem that tells us when a solution to this problem exists. It says that if f is continuous, then for every choice of y_{0}, the solution exists in a time interval $[0, T)$ for some $0<T \leq \infty$. But, the solution may not exist everywhere and it is not guaranteed to be unique.

To solve a linear first order differential equation, first bring y, y^{\prime} to one side and then divide to get the coefficient of y^{\prime} to be 1 so you have something of the form $y^{\prime}+P(x) y=$ $Q(x)$. Then, multiply the integrating factor $I(x)=e^{\int P(x) d x}$. We define it this way because then $I^{\prime}=I(x) P(x)$ (convince yourself of this). This gives $I(x) y^{\prime}+I(x) P(x) y=$ $I(x) Q(x)$. Then the left side is just $(I(x) y)^{\prime}=I(x) Q(x)$ and we can solve this by integrating then dividing by $I(x)$.
Another form of differential equation that has a nice solution is the case of separable equations. A differential equation is separable if we can write it as $y^{\prime}=f(y) g(t)$, a term only involving y s and constants with a term only involving t s and constants. To do this, we write $y^{\prime}=\frac{d y}{d t}$ and move all the t s to one side and the y s to the other to get $\frac{d y}{f(y)}=g(t) d t$. Now integrating gives us a solution. Often, we do not explicitly solve for y and leave them in an implicit form.

2.2 Examples

4. Find the general solution to $y^{\prime}-\frac{y}{x+1}=(x+1)^{2}$.
5. Find the solution to $y^{\prime} e^{y}=2 t+1$ with $y(1)=0$.

2.3 Problems

6. True False We cannot use the method of separable equations on $y^{\prime}=e^{y+t}$ because it involves a sum of y and t.
7. True False If we can use the method of separable equations, we must be able to write $y^{\prime}=(a y+b) f(t)$ for a linear polynomial in terms of y.
8. True False The equation $y^{\prime}=y+t$ is not separable and so we do not know how to solve it.
9. Find the solution of $y^{\prime}+\frac{y}{x}=e^{x} / x$ with $y(1)=0$.
10. Find the solution of $y^{\prime}+2 x y=2 x$ with $y(0)=0$.
11. Find the solution to $r^{\prime}=r^{2} / t$ with $r(1)=1$.
12. Find the general solution of $y^{\prime}=2 t \sec y$.

2.4 Extra Problems

13. Find the solution to $\frac{d y}{d t}=3 t^{2} y^{3}+e^{t} y^{3}$ with $y(0)=-1$.
14. Find the solution to $\frac{d y}{d x}=6 x y^{2}$ with $y(1)=1 / 4$.
15. Find the solution to $\frac{d y}{d x}=\frac{3 x^{2}+2 x+1}{2 y+1}$ with $y(0)=1$.
16. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.
17. Find the solution to $\frac{d x}{d y}=e^{x-y}$ with $x(0)=0$.
